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Dynamic Configuration for Distributed Systems

JEFF KRAMER AND JEFF MAGEE

Abstract-Dynamic system configuration is the ability to modify and
extend a system while it is running. The facility is a requirement in
large distributed systems where it may not be possible or economic to
stop the entire system to allow modification to part of its hardware or
software. It is also useful during production of the system to aid incre-
mental integration of component parts, and during operation to aid
system evolution. The paper introduces a model of the configuration
process which permits dynamic incremental modification and exten-
sion. Using this model we determine the properties required by lan-
guages and their execution environments to support dynamic configura-
tion. CONIC, the distributed system which has been developed at
Imperial College with the specific objective of supporting dynamic
configuration, is described to illustrate the feasibility of the model.

Index Terms-Configuration, configuration process, configuration
specification, distributed systems, flexibility, reusability, system
evolution.

I. SYSTEM EVOLUTION

T HERE IS a very real need for large embedded computer
systems to accommodate evolutionary change, particu-

larly those systems with a long expected lifetime. They need
to evolve as human needs change, technology changes, and the
application environment changes. In fact, the introduction
of the computer system itself tends to act as a stimulus for
change in the application environment, and so the services pro-
vided by the system will need to evolve [1]. These changes
may require modification of a function already provided by
the system, or extension by the introduction of new functions.
It may involve a change in implementation due to a technol-
ogy change, improved implementation techniques, or to pro-
vide redundancy in the system.

In general, evolutionary changes are difficult to accommodate
as they cannot be predicted at the time the system is designed.
Consequently, systems should be sufficiently flexible to per-
mit arbitrary incremental changes.

It has been widely recognized that in order to build large
software systems it is necessary to decompose the system into
components each of which can be separately programmed,
compiled, and tested. The system is then constructed as a
configuration of these software components. Thre separate
activities of component programming and system configura-
tion have been referred to as "programming-in-the-small" and
"programming-in-the-large," respectively [2]. We concentrate
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on the latter configuration process as a means of satisfying
the flexibility requirements.
Distributed systems potentially offer a flexible environment

for such modification and extension. Computer (hardware)
stations can be added as and when required, and connected
to a network to permit intercommunication with other sta-
tions in the system [3], [4]. Similar configuration flexibility
is required for the software components of the system. Our
experience is that those systems built to accommodate possible
physical distribution exhibit much more flexibility due to the
enforced modularity and component independence than those
designed explicitly for centralized hardware. We therefore
propose to cater for distributed systems with centralized im-
plementation as a limiting case.
When can changes or extensions be introduced into a sys-

tem? Recent work on programming environments, such as

the Ada Program Support Environment, has concentrated on

configuration management during the software development
process. While this eases the problems of software evolution
during the development of a product it does not handle the
problems of changing a system's software without rebuilding
the system. In fact, the traditional edit/compile/link/load
approach means that changes must be followed by recompiling
and/or rebuilding the entire system. Incremental changes to

a system are not well supported.
Also, in a large number of cases, it is not feasible either for

economic or safety reasons to stop or take off-line an entire
computer system in order to change part of it. Hence, in order
to provide for the greatest flexibility, we wish to support dy-
namic configuration. This is the ability to modify and extend
a system while it is running.
This paper discusses the issues associated with the need to

support and control the dynamic configuration of software
in systems which may be distributed. We concentrate on the
properties required of the support environment rather than
those required of the application. The need for validation
of the configuration changes in order to maintain system con-
sistency is also discussed.
Section II of the paper introduces a model of the dynamic

configuration process. Section III describes the properties
required by programming languages and their supporting sys-
tems to allow dynamic configuration. Section IV describes
the configuration features of CONIC [5], a language and sup-
port system developed at Imperial College which satisfies most
of the required properties for dynamic configuration. The
software generation and configuration tools contained in the
CONIC system are described in Section V. A simple hospital
patient monitoring system is used to illustrate some of the
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Fig. 1. Static configuration process.

CONIC facilities. Finally some of the remaining problems and
the need for further work are discussed.

II. CONFIGURATION MODEL

This section introduces the terminology and basic concepts
associated with system configuration. We present a model of
the configuration process which permits dynamic incremental
modification and extension. This model is used in the next
section to determine the properties required by languages and
their execution environments in order to support dynamic
configuration.

A. Configuration Specifications

As mentioned, systems are constructed from a set of compo-
nent parts. In the same way as a program source text written
in a programming language describes the structure and behav-
ior of a software component, so a configuration specification
written in a configuration language describes the behavior and
structure of a system composed of a set of components. For
instance, a complete configuration specification for a distrib-
uted system will described the types of software components
from which the system is to be constructed, the instances of
these components which exist in the system, how these in-
stances are interconnected (which instance communicates with
which other instances), and where they are located on the
distributed system hardware. This last aspect on location can
of course be omitted from specifications for nondistributed
systems. In this paper we concentrate on logical (software)
configurations and the configuration process.

B. Static Configuration
The static configuration approach to building a system from

its configuration specification is illustrated in Fig. 1.
The builder process is directed by the Configuration Specifi-

cation to produce a load image of groups of components for
each of the computer stations in the distributed system. This
builder process is equivalent to the linker in traditional sequen-
tial programming systems.
This approach to system building provides a complete static

system configuration. It is complete in the sense that all com-
ponents of the system are configured at the same time. If a
modified system is required, then the complete system must
be stopped and rebuilt according to a new configuration speci-
fication. The new configuration specification will be an edited
version of the old specification incorporating the changes.
Thus this approach to system building is exactly equivalent to
"edit/compile/link-load" process used for traditional sequen-
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Fig. 2. Dynamic configuration process.

tial programming. Incremental changes to the system configu-
ration are not supported and consequently it is not possible
to change systems on-line.
This approach has been taken by most of the recent pro-

posals for programming (distributed) systems, such as Ada
[61, DP [7], SR [8], STARMOD [9], CSP [10], and many
others. In general these languages are restricted to static con-
figuration because they do not enforce sufficient separation
between component programming and configuration. For in-
stance, all the above mentioned languages directly specify the
intended destination of an interprocess communication. The
interconnections are thus embedded at the programming level
and hence do not facilitate configuration changes.
Some languages support dynamic interconnections by name

passing. For instance, in SR a message can contain the name
of a process entry to which a subsequent message can be ad-
dressed. However, the provision of different unpredicted
interconnections, and hence not provided by name passing,
will still require reprogramming, compiling, and building of
the system. Use of the term static is perhaps a little more
difficult to justify in language systems which permit dynamic
creation of software components, such as Ada. However, the
components which can be created dynamically in Ada are of
existing component types. Modification or extension of the
system by the modification of existing components or the
introduction of arbitrary new component types will also re-
quire reprogramming and building the system. At best only
those stations which are affected by the new configuration
specification need to be stopped and reloaded.

C. Dynamic Configuration
An incremental dynamic configuration process provides for

arbitrary unpredicted modification and extension without
rebuilding the entire system. Where possible the incremental
changes to the system should be made without stopping the
unaffected parts of the system. The dynamic configuration
process can be modeled as shown in Fig. 2.
The configuration specification describes the logical and

physical structure of the system. Changes to the system are
submitted in the form of change specifications such as the
introduction of new components, modification of existing
components, and provision of different interconnection pat-
terns. Changes must be validated to ensure that the changes
are compatible with the existing system. The result is a new
specification. A configuration manager generates the required
operating system commands such as loading the required code,
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deleting and creating components, and removing and setting
up connections. The result is a new system described by the
new specification. Of course, such a dynamic configuration
process must be supported by both the language used to pro-

gram the components and the underlying (distributed) oper-

ating system. The required properties are identified in the
next section.
Some existing programming systems for single computers

provide a separate configuration language and some degree
of dynamic configuration, notably Mesa [1] and MASCOT
[12]. In the distributed programming area, CONIC [5], PRO-
NET/NETSLA [13], and PCL [14] have a separate configura-
tion language and allow some form of dynamic configuration.
The distributed programming language and system ARGUS
[15] permits a large degree of dynamic configuration; how-
ever, the configuration statements are embedded in the text of
component programs (Guardians). We believe this approach,
in addition to restricting flexibility makes it difficult to vali-
date configuration changes. As mentioned before, the most

common mistake is that there is insufficient separation between
programming and configuration. Features of the above and
other systems are used to illustrate the required properties for
dynamic configuration discussed in the next section.

III. REQUIRED PROPERTIES FOR

DYNAMIC CONFIGURATION

The properties required by the different components of the
configuration model are categorized into those essential for
allowing dynamic configuration and those desirable for making
dynamic configuration either simpler to implement or more

efficient.

A. Programming Language

Programming language refers to the language used to pro-

gram the software components which form the system build-
ing blocks.

Essential Properties:
Modularity-The language must provide software modules

which can be written and compiled independently from the
configuration in which they will run, i.e., context indepen-
dence. The statements inside a module should refer only to
local objects since reference to global objects such as shared
data restricts the ease with which modules can be added or

removed. In a distributed system global references also re-

strict the way modules can be allocated to physical processors.

Interconnection-Similarly, the direct naming of other
modules or communication entities restricts the logical con-

figuration flexibility since change would involve modifying
these names in the program text and thus require recompila-
tion. A module must communicate with the outside world
solely through its interface. Module interconnections should
not be embedded in the module code but left to the separate
configuration specification. Interconnection independence is
the key property in separating module programming from
configuration [16].

Interfacing-All the information passing into and out of
a module must be by an interface which specifies both the

type of the information and the mechanism by which it is to
be transferred. This well-defined interface should be the only
logical information required by the configuration level to use
the module. Interconnection between modules is specified
and checked at the configuration level using the irterface
information.

Intercommunication Primitives-In distributed systems,
the intermodule communication primitives provided by the
programming language must have the same syntax and seman-
tics for local (same station) and remote (interstation) com-
munication. The property of communication transparency is
required whichever communication primitives are adopted.
Since modules may be allocated either to the same or dif-
ferent stations, they must have the same behavior for these
different allocations to allow full configuration flexibility.
By behavior we mean logical behavior since it is unavoidable
that the performance or time behavior will be different due
to the increased latency of remote communication.

Desirable Properties:
Resource Requirements-It is desirable to know the maxi-

mum physical resource requirements of a module when it is
compiled. This allows the configuration manager to check
that a station can provide these requirements and that the
module will not fail once it has started because, for example,
it cannot acquire enough store. For some real-time applica-
tions this property of known resource requirements is essen-
tial for reliable deterministic system behavior.
We regard the above properties as collectively contributing

to the degree of configuration independence exhibited by the
components provided by the programming language. Most
languages with modules exhibit some but not all of the prop-
erties. For example, the program modules of SR (resources),
ARGUS (guardians), PRONET (processes), and CONIC (mod-
ules), exhibit the property of context independence while
those of Ada (packages) do not, since Ada packages may ac-
cess shared data and procedures. PRONET processes and
CONIC modules achieve interconnection independence
through the use of input and output ports from which mes-

sages are received and sent respectively. As mentioned in
Section II, languages such as Ada, STARMOD, CSP, and SR
which use direct naming do not exhibit this property. Most
modern programming languages with module constructs pro-
vide well defined interfaces using a mechanism similar to the
import and export lists of MESA. The property of known
resource requirements is difficult to provide without aban-
doning useful programming techniques such as recursion and
dynamic variables (heaps). A compromise used in CONIC
provides these facilities but specifies an upper bound for the
store required by a module. Exceeding this bound causes the
module to fail.

B. Configuration and Change Specifications

The configuration language used to describe logical structure
of a system is outlined below. We assume that change specifi-
cations used to describe modifications to a system are also
described in this configuration language.
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Essential Properties:
Context Definition-The configuration language must

specify the set of module types from which the system is
constructed.

Instantiation-It must also specify the instances of module
types which are to be created in the system.

Interconnection-Finally, the configuration language must
describe the way module instances are interconnected.

Change Specification-To allow the configuration lan-
guage to express changes to a configuration it must also be
able to specify the inverse functions to those above. It must
be able to specify the disconnection of module instances, the
deletion of module instances, and the removal of module types
from the context of the system. Changes should appear as
updates to the configuration specifications.

Separation of Function-Full configuration flexibility is
only possible if each of the above configuration functions can
be specified separately. For example, combining module in-
stantiation with module interconnection means that it would
not be possible to reconnect a module without deleting it and
subsequently reinstantiating it with new connections.

Specification Modularity-In a large system with a large
number of module instances, the name space would become
unmanageable and the specification unreadable unless it were
structured in some way. Structuring of the specification is
analogous to the need for structure in system design and con-
struction. It aids both the specification process and compre-
hension of specifications.

Desirable Properties:
Declarative Configuration Language-It is desirable that

the configuration specification be descriptive (declarative)
rather than operational (in the sense of a configuration "pro-
gram" which is executed). In general declarative specifications
are more amenable to analysis and manipulation, e.g., equiv-
alence checks, logical consistency checks, and transforma-
tions. Also, a specification should describe the current con-
figuration of the system. Specification/system consistency is
further discussed in Section III-D. Operational specifications
introduce a time dependency which complicates this relation-
ship especially for large systems (i.e., the current configuration
would be given by the current state of the configuration pro-
gram). Additionally, introduction of arbitrary unpredicted
changes can be presented as declarative specification updates.
An executing configuration program which formed part of the
behavior of the system would present implementation diffi-
culties if on-line changes were allowed.
All the systems which provide separate configuration lan-

guages support context definition, instantiation and intercon-
nection. However, C/Mesa, the Mesa configuration language,
combines instantiation with interconnection. In C/Mesa, in-
stances of modules are connected together by parameterizing
them with interface records, the definitions of which are im-
ported or exported by module programs. A similar intercon-
nection method is used in MASCOT, where activities (pro-
cesses) are parameterized with intercommunication data areas
(IDA's). Consequently, both Mesa and MASCOT do not ex-
hibit the separation of function property. NETSLA, the PRO-
NET configuration language, and PCL provide separate inter-

connection by using link statements which connect input ports
to output ports. NETSLA is an executable configuration
language which performs configuration changes in response to
messages sent and events signalled by component processes.
In addition to the disadvantages outlined above this incurs a
significant run time overhead [17]. Although declarative,
PCL attempts to capture both the static and dynamic configu-
ration structure. Component processes can execute instanti-
ation statements. This complication renders PCL descriptions
less amenable to analysis.

Finally, a recent report [18] describes a configuration lan-
guage (LL) based on Milner's calculus for communicating
processes CCS [19]. Like CCS, LL provides an algebraic speci-
fication of the configuration which is amenable to manipu-
lation and simplification. In CONIC there is an explicit link
construct for interconnection as opposed to the name equiv-
alence method of CCS. Both approaches have similar expres-
sive power and one can be transformed into the other.

C. Operating System
The distributed operating system is responsible for modi-

fying the running system in response to commands from the
Configuration Manager.
Essential Properties:
Module Management-The operating system must provide

the ability to load/delete the code for module types into
station(s). It must support the creation/deletion of instances
of module types. Additionally, it must allow the configura-
tion manager to control the execution of modules (start/stop)
and to-query the state' of the system.

Connection Management-The operating system must
provide facilities to establish and delete connections between
modules, both for modules located on the same station and,
in distributed systems, for remotely located modules.

Communication Support-For both statically and dynam-
ically configured systems, the operating system must support
intermodule communication.
Desirable Properties:
Real-Time Modification-To fully exploit the potential of

dynamic configuration management, the time taken by man-

agement operations should be such that they can be used for
on-line real-time reconfiguration of the system in response to
failures.

Overhead-The management facilities provided by the
operating system should incur a minimal run-time overhead
on the normal operation of the system. Additionally, the
store required by these management facilities in each station
should be kept to a minimum. For applications such as dis-
tributed process control, the operating system should be able
to support module management on very small microprocessor
based stations.

Logical Interconnection-Where stations in a distributed
system are not fully interconnected by the physical communi-
cation network the operating system should provide full log-
ical communication interconnection (i.e., each pair of stations
can directly exchange information). This full logical intercon-
nection considerably simplifies logical to physical mapping
(i.e. module allocation) since the configuration manager can
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allocate modules to stations with the knowledge that they can
always be interconnected.

Flexible OS Configuration-The operating system should
itself be capable of flexible configuration to enable it to be
used in different systems and to allow it to be changed in the
same way as the application system it supports. For example,
all the module management elements of the operating system
may not be required on very small ROM based systems which
are always statically configured. It thus seems sensible that
the operating system be constructed using the same module
structure as the application system.
A number of distributed operating systems described in the

literature have some or all of these properties: Medusa [20],
Amoeba [21], Accent [22], etc. The major constraint on the
operating system is that the facilities it provides must be inte-
grated with the programming language and configuration lan-
guage for an efficient and safe system. Failure to achieve
efficient implementation can negate the benefits of dynamic
configuration. For example, the "evolutionary kernel" for
MASCOT which supports dynamic configuration is little used
because of its run-time overhead. Also, dynamic configuration
can be a dangerous activity if changes are not validated and
controlled. Hence the need for the validation and manage-
ment activities described below.

D. The Validation Process

Essential Properties:
Interconnection-The checks that can be performed to

validate both configurations and configuration changes depend
primarily on the interfaces provided by the software modules.
The minimum check, which must be supported by both the
module programming language and the configuration language,
is the ability to ensure type compatibility between communi-
cating modules.

Specification/System Consistency-It is essential to ensure
that the configuration of the actual system is given by and
satisfies the current specification. The system can be consid-
ered as an implementation of the specification and verified as
in conventional program verification. Even change specifica-
tions can be verified using the verification approach first de-
scribed for data representations [23]. An abstraction function
A can be defined to map from the system to its specification,
i.e.

A (systemi) - specificationi.
Proof of the correctness of the change commands for some
change specification can then be demonstrated by ensuring that

A (commands(system1i)) = changes(specificationE)
where

commands(systemi) = systemi1..
and

changes(specificationi) = specificationi +1.
The configuration manager can be thought of as performing
the inverse mapping to that of the abstraction function A.

Desirable Properties:
Allocation-The logical-to-physical mapping should be

checked to ensure that the resources required by modules can
be provided by the stations to which they are allocated. As
discussed in Section III modules should have known resource
requirements to allow rigorous validation.

Behavior-Ideally, it should be possible to perform some
semantic checks on the behavior of the configuration based
on information provided on the behavior of each module.
Semantic validation could enable derivation of the behavior
of the projected system by composition of the individual
module behaviors and provide checks such as deadlock detec-
tion. This is further discussed in the conclusions.
The rigorous type checking of interfaces is relatively easy

to provide. Both C/Mesa and NETSLA enable these checks
to be performed at configuration time. However, there is
no current easy answer to providing semantic checks on
configurations.

E. Configuration Management
The configuration manager translates the (valid) changes

expressed for the configuration specification into executable
commands to the operating system to change the current sys-
tem. This translation may require knowledge of the state of
the system. The required information may be obtained from
a database maintained by the configuration manager, and/or
from the system itself. For instance, the manager may query
the system to decide on the actions required (e.g., is a com-
ponent type already resident at a particular station or will it
have to be down-line loaded?). Alsd, a single change may re-
sult in a number of commands to the system (e.g., create com-
ponent instance X query; load; instantiate).
Essential Properties:
Specification/System Consistency-As above.

Desirable Properties:
Change Strategy-In Section Ill-B we discussed the desir-

ability of using a declarative language to specify both configu-
rations and changes. Consequently, a change specification
written in such a declarative language would say nothing about
how the change should be performed. This leaves the con-
figuration manager with the freedom to decide (perhaps with
human operator help) the strategy used in performing the
change. The goal of the change strategy would be to perform
the change with minimum disruption to the running system.
For example, it could minimize the "down-time" of
replacing a module by loading and creating the new module
instance before deleting the old one.

Allocation Strategy-Specification of the logical to phys-
ical mapping in a distributed system may be complete in that
it specifies the exact station to which each module should be
allocated. However, if allocation information is less complete
the configuration manager can exploit this freedom and allo-
cate modules to stations based on resource information. The
configuration manager could thus optimize the use of the dis-
tributed system hardware resources. This freedom can be fur-
ther exploited in failure situations where, if sufficient redun-
dancy exists in the system, the configuration manager could
reallocate modules from failed stations to working ones. It
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should be noted that this reconfiguration could be performed
without changing the configuration specification, i.e., the con-
figuration specification is still satisfied.
In the above sections we have been concerned with the prop-

erties required from language systems and their support en-
vironments in order to describe and permit dynamic config-
uration. The systems referenced provide some but not all
of the properties required. In the next section we describe
CONIC, a system which attempts to exhibit all of the required
properties.

IV. CONFIGURATION IN CONIC
In order to illustrate the identified properties, a patient mon-

itoring system example [24] is developed and described in
CONIC. The CONIC system [5] has been developed at Im-
perial College specifically with the objective of supporting the
construction of dynamically reconfigurable distributed sys-
tems. CONIC provides a Configuration language [25] for
describing systems consisting of interconnected modules, a
Programming language [26] for programming module types,
and a distributed operating system [27] to support and man-
age the execution of CONIC systems.
Although CONIC is used as the means for demonstrating

how the described facilities can be provided, it is not our in-

tional request-response message transactions. Modules have
well-defined interfaces defined in terms oflocal typed exitports
to which messages can be sent and entryports from which mes-
sages can be received. Instances of these modules in a running
system may only communicate by message passing which pro-
vide the required communication transparency. Messages are
defined by standard Pascal type declarations. Examples of
module type definitions are shown below in outline. These
module types form part of the patient monitoring system
which is used as an example throughout the section.

module bedmonitor (scanrate:integer);
use patienttypes: alarmstype, patientstatustype;
exitport alarms:alarmstype;
entryport status:signaltype reply patientstatustype;
{
-The module scans sensors attached to a patient

every "scanrate" seconds. When the sensor read-
ings are outside ranges set at a bed-side terminal
it displays an alarm at the bedside terminal and
sends alarm messages to "alarms." Data on sen-
sor readings and ranges are sent to "status" in re-
sponse to a "signal" request.

}
end.

module nurseunit;
use patienttypes: alarmstype, patientstatustype, maxbed;
entryport alarms[l maxbed] :alarmstype;
exitport query [1 - maxbed] :signaltype reply patientstatustype;
{

-The module displays alarms received on "alarms
[i] " on a terminal and in response to input at the
terminal displays the status of a patient by re-
questing it on "query [i] ."

}
end.

tention to advocate CONIC as the only approach, but rather
to advocate provision of the identified properties in program-
ming and configuration languages and their environments.

A. The CONIC Programming Language
The programming language is based on Pascal to which mes-

sage passing primitives have been added. The message primi-
tives provide both unidirectional asynchronous and bidirec-

CONIC modules can be compiled separately since they con-
tain no references to outside objects (except type definitions),
i.e., they satisfy context and interconnection transparency.
The parameters of a module are resolved when an instance of
the module is created at a station. The types (and constants)
modules use for communication are contained in type defini-
tion units. In these, types are declared by standard Pascal type
definitions, e.g.,

define patienttypes:maxbed, sensortype, alarmstype, patientstatustype;
const maxbed = 16;
type sensortype = (bloodpressure, skinresistance,

temperature, pulse);
alarmtype = (outofrange, sensorfault, noalarm);
alarmstype = array [sensortype] of alarmtype;

end.
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Fig. 3. Ward monitoring system.

Module types written in the CONIC programming language

are configuration independent as they satisfy all the required
properties mentioned in Section III-A.

B. System Configuration Specification in CONIC

Systems in CONIC consist of interconnected sets of module
instances. Modules are interconnected by linking their exit-
ports to the entryports of other module instances. The sys-

tem specification below describes the patient monitoring sys-

tem of a ward consisting of four beds and a nurse station.
Alarms fromf bed stations are displayed at the nurse station
and the nurse station can query the status of any bed (Fig. 3).

system ward;

use bedmonitor; nurseunit;

const nbed = 4;

create family k: [1 * * nbed]
bed[k]: bedmonitor(l00);

create nurse : nurseunit;

link family k: [1 * nbed]
bed [k] .alarms to nurse.alarms [k];
nurse.query [k] to bed [k] .status;

end.

A system configuration specification identifies the module
types frbrn which the system will be constructed, declares the
instances of these types which will exist in the system and
describes the interconnection of instances. The three func-
tions of context definition, instantiation, and interconnection
are provided by -the use, create, and link constructs respec-

tively (separation of function, Section IIl-B).
In the "ward" system in Fig. 3, the module types "bedmon-

itor" and "nurseunit" are brought into context in the use con-

struct. Named instances "bed" and "nurse" are then created
using the. available module types. If a module type is param-

eterized (e.g., "bedmonitor"), the actual parameters are spec-

ified. The create construct can also be used to create a family
(array) of module instances as shown for "bed." Finally, the

instances are connected together using the link construct. This
binds entryports to exitports. The constraint on this binding
is that an exitport must have the same type as the entryport
to which it is linked. For example, the exitports "query [ki"
of "nurse" and the entryport "status" provided by each of
the family of "bed" must have identical type definitions, i.e.,
"signaltype reply patientstatustype."
Although all the links in the example are from one exitport

to one entryport, an entryport in CONIC may have more than
one exitport connected to it, i.e., the entryport may provide
a service entry to a number of clients. Furthermore, exitports
which have no reply part (indicating that they can only be
used for unidirectional message transactions) can be connected
to more than one entryport, i.e., they can be multidestination.

C. Configuration Change Specifications in CONIC

Changes to a system may be made merely by editing the text

of its configuration specification and rebuilding the system
from this edited specification. However this has two disadvan-
tages; first, there is no record or history of changes made to
the system and second, it is difficult to dynamically reconfig-
ure a system since the edited specification must be compared
to the original specification to determine the changes the con-
figuration manager must make to the running system. For
these reasons changes are specified separately in CONIC, al-
though the change specifications may be applied to the system
specification to give a new system specification text if required.
The following example outlines the change specification to
add a data logging facility to the patient monitoring system.

module datalogger(recordfreq:integer);
use patienttypes:patientstatustype, maxbed;

loggertypes:patientidtype, replaydatatype;
exitport getdata [ I * maxbed]: signaltype

reply patientstatustype;
entryport history : patientidtype

reply replaydatatype;
{
-Reads patient status at "recordfreq" intervals from

"getdata[i]" and records the information on a floppy
disk. Information on a particular patient is sent in reply
to a request from "history"
}

end.

change ward;

use datalogger;

create log:datalogger(500);

link family k: [I - nbed]
log.getdata[k] to bed[k] .status;

end.

This change is an extension to the existing "ward" system;
it does not modify the connections of existing "bed" and
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"nurse"5 modules. If performed dynamically, the change does
not involve interrupting the execution of these modules. The
example below demonstrates a change involving modification
to the existing system. It replaces the module type "nurse-
unit" to enable the "nurse" to display history information
from the "log" module.

module enhancednurseunit;
use patienttypes: alarmstype, patientstatustype, maxbed;

loggertypes: patientidtype, replaydatatype;
entryport alarms[l - - maxbed] :alarmstype;
exitport query[I4 - maxbed] :signaltype

reply patientstatustype;
history: patientidtype

reply replaydatatype;

end.

change ward;

unlink family k: [I nbed]
bed [k] .alarms from nurse.alarms [k];
nurse.query[k] from bed [k] .status;

delete nurse;

remove nurseunit;

use enhancednurseunit;

create newnurse:enhancednurseunit;

link family k: [1 * nbed]
bed [k] .alarms to newnurse.alarms [k],;
newnurse.query [k] to bed [k] .status;

link newnurse.history to log.history;

end.

Remove, delete, and unlink perform the inverse functions to
use, create, and link in configuration specifications. Remove
removes knowledge of a module type from the system con-
figuration specification. It means that further changes to
the system cannot declare instances of the removed module
type unless it is again included in the system context by a
use. Delete removes the named module instance from the
system and similarfly unlink removes exitport to entryport
links. A change will only be valid if all the links to a module
instance are "unlinked" when the instance is "deleted" and
all the instances of a module type are "deleted" when the
type is "removed." The system resulting from applying both
the above changes is described by the following specification
(Fig. 4).

system ward;

alarms>> >>alarms[1]1
IBED[11 .:
I status<< \ >>alarms[ 43

INEWNURSE

<'\<<query1l]

<<query[ 4J]
I \/ / '_ history

I alarms» \
BEDt4]1

status<<'<\/-
I I\ \ history

\ - <<getdata[1]

<<getdata[4i]
i ^LOG

Fig. 4. Modified ward monitoring system.

BEDMONITOR

DISPLAY MONITOR
areal (<-<< prompts

alarms>>->>
area2 <<-<< data

keyboard >>->> input status<<-<<
I I _ _ _ _ ___. I__ _ _

Fig. 5. Bedmonitor group.

const nbed = 4;

create family k: 1[ nbed]
bed[k]: bedmonitor(100);

create newnurse: enhancednurseunit;
log datalogger(500);

link family k: 41 * * nbed]
bed[k].alarms to newnurse.alarms[k];
newnurse.query [k] to bed [k] .status;
log.getdata[k] to bed[k] .status;

link newnurse.history to log.history;

end.

D. Structuring Configuration Specifications in CONIC
In CONIC, specification modularity is provided by the group

facility. A group describes a set of interconnected instances of
modules (or groups) and has an interface defined in terms of
typed exitports and entryports. The interface to a group has
exactly the same form as a module interface and consequently
the types referred to in the system specification can refer to
modules or groups. For example, in the simulation of the
patient monitoring system we have implemented, the "bed-
monitor" type is actually defined by a group as shown below
and diagrammatically in Fig. 5.

group module bedmonitor(scanrate:integer);
use patienttypes: alarmstype, patientstatustype;
exitport alanns:alarmstype;
entryport status:signaltype reply patientstatustype;

use bedmonitor; enhancednurseunit; datalogger;
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Fig. 6. Ward monitoring system hardware.
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Fig. 7. The CONIC compiler.

create newnurse: enhancednurseunit at diskstation;
log : datalogger(500) at newnurse;

link family k: [ 1 nbed]
bed4k].alarms to newnurse.alarms[k];
newnurse.query [k] to bed [k] .status;
log.getdata[k] to bed [k] .status;

use monitoring; beddisplay;

create monitor: monitoring(scanrate);
display : beddisplay;

link monitor.alarms to alarms;
status to monitor.status;
monitor.prompts to display.areal;
monitor.data to display.area2;
display.keyboard to monitor.input;

end.

The structure of a group is defined using the use, create, and
link constructs previously discussed. In the same way that
entryports are bound to exitports, group interface ports are

bound to the ports of module instances declared inside the
group by linking.

E. Allocation in CONIC
The allocation of modules to physical stations is expressed

by extending the syntax of create to additionally name either
a module instance with which the new instance should be
located or the physical address at which the module should be
located. For example, the allocation of the patient monitoring
system to physical stations as depicted in Fig. 6 is expressed
by the configuration specification below. It should be noted
that the configuration specification has been extended to show
the basic operating system which must be resident in each
station. This basic operating system is itself a group of CONIC
modules.

system ward;

use bedmonitor; enhancednurseunit; datalogger;
basicOS; diskOS;

const nbed=4;

create family j: [1 - * nbed]
station[j] :basicOS at node (j);

create diskstation:diskOS at node(nbed + 1);

create family k: [41 nbed]
bed [k]: bedmonitor(l00) at station [k1;

link newnurse.history to log.history;

end.

The modules within a group are by default allocated to the
same physical location. A physically distributed group can be
expressed by parameterizing it with the instances with which
its constituent modules should be located. Thus, the designer
of a group can express the potential distribution of a group

even though its user may decide to instantiate it at one loca-
tion. The at construct, as described above, allows the designer
to specify which module instances should be colocated with-
out specifying the exact physical location. This freedom can

be exploited by the configuration manager as discussed in
Section III-E.
This section has outlined a language for describing system

configuration; the next section describes the tools necessary

to build systems from specifications expressed in this language.

V. THE CONIC CONFIGURATION TOOLS

The software generation tools for CONIC have been designed
for a host/target development environment. The host com-

puter system provides a module compiler and static system
builder. Once built, systems can be loaded on to the target
distributed system by down-line loading, floppy disk, RoM,
etc. A configuration manager, which can run on the host or

target system, is provided to allow systems to be dynamically
configured. We require the static configuration capability for
two reasons.

1) In CONIC, the operating system which supports dynamic
configuration operations on the target system is itself written
as a set of CONIC modules. Consequently, to support the
dynamic configuration of application systems we must first
be able to build the operating system from its configuration
specification.
2) For systems (or parts of systems) which do not change

it is uneconomic to provide the run-time support for dynamic
configuration (e.g., ROM based stations). Since the operating
system is itself configurable, it is simple to leave out the mod-
ules which perform configuration operations. The operating
system and application system are built together from a con-

figuration specification using the static builder.
As shown in Fig. 7 the CONIC compiler produces two out-

put files for each module source file submitted for compila-
tion. The module descriptor file contains a description of the

VDU

I
STATION 11
(bed[1]) I
I31

VDU

I
I

!STATION 41
1(bed[4])
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File STATION 5 File for

BUILDER each
Target ---->1 1 station
System
Description

Fig. 8. The CONIC static system builder.

module interface. It is a symbol table which gives the names
and types of the module's ports and the addresses assigned to
them by the compiler. The descriptor file also includes in-
formation on formal parameters. The code file contains the
object code in relocatabe form for the module. It also in-
cludes a header block which has information on the module's
store requirements (i.e., for code, data, heap space). These
files are used by both the builder and the configuration man-
ager. Currently, code files are only generated for LSI11 com-
puters. When CONIC supports more than one target processor
type a module may have more than one code file, although
it will still have only one descriptor file (i.e., a code file for
68000 and a code file for LSI1 1).

A. Static System Builder
The Builder processes system configuration specifications

to produce a load image for each station in the distributed
target system. It consists of two programs (Fig. 8). A config-
uration language translator validates system and group specifi-
cations and translates them into a symbol table form (descrip-
tor file) which can be used by the station builder. Validation
of a system specification includes checking module instance
parameters are of the correct type and that exitports are only
linked to entryports of the same type. The station builder
uses the system descriptor file together with information on
the physical target system to produce load images for each
station.

Static building involves submitting a configuration specifi-
cation to the Translator which produces a System Descriptor
File. The Station Builder takes this file and fetches module
code files to produce a Load Image for each station in the
target system. The "target system description" used by the
station builder specifies the type (currently only LS111) and
memory size of stations in the target system. The station
builder does not need to know how stations are physically
connected to each other since the CONIC run-time support
provides a communication system which allows a station to
transmit a message to any other station (i.e., logically, stations
are fully interconnected). It should be noted that the Trans-
lator can be used to update a System Descriptor to produce
an updated descriptor by processing Change Specifications.
To implement this change, the updated System Descriptor

Change specification
11

CONIC /
Library I CONFIGURATION (--I System
of module 1-->1' MANAGER I desc-
group (includes 1-->[ riptor
descriptors/ validation) \ File

I I t

Operating System
Commands

Fig. 9. The CONIC dynamic configuration manager.

file must then be submitted to the Station Builder to produce
a new Load Image for each station. The target stations must
then be reloaded with the new system. The CONIC Station
Builder illustrates the static configuration process given in
Section II-B.

B. Dynamic Configuration Manager

The Configuration Manager translates requests to change
the system, expressed in the CONIC configuration language,
into commands to the distributed operating system to execute
reconfiguration operatfons. Although the Configuration Man-
ager could run on the host system and communicate with the
target operating system via a communications link, we have
chosen to implement it in CONIC enabling it to execute on
the target system if desired. Implementing the Configuration
Manager as part of the target system allows the system itself
to initiate configuration changes in response to failures. The
environment in which the Configuration Manager exists is
shown in Fig. 9.
The Configuration Manager has a similar function to the

Translator in that it validates change specifications against the
System Descriptor File and subsequently produces an updated
descriptor. The System Descriptor File is a compiled form of
the system configuration specification. The initial descriptor
file for a system is produced by the Translator. In addition to
updating the system descriptor, the Configuration Manager
sends commands to the target operating system to invoke
reconfiguration operations. The configuration operations pro-
vided by the CONIC Operating System satisfy the required
properties given in Section III-C and are as follows.

load(stationid, codefile, moduletypeid)
unload(stationid, moduletypeid)

create(stationid, moduletypeid,
moduleinstanceid, parameterlist)

delete(stationid, moduleinstanceid)

link(exitportid, entryportid)
unlink(exitportid, entryportid)

start (stationid, moduleinstanceid)
stop(stationid, moduleinstanceid)

Each object in the target system (moduleinstance, module-
type, port) is allocated a system identifier by the Configura-
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tion Manager (or Translator). The Configuration Manager
communicates with the Operating system in terms of these
identifiers. It should be noted that the Operating System does
not know about groups. They are purely a specification struc-
turing construct. To illustrate how the above operations are
used by the Configuration Manager, the set of operations in-
voked to effect the change of adding a datalogging facility to
the ward monitoring system is outlined below.

change ward;

use datalogger;

create log: datalogger(500) at diskstation;

link family k: [1 nbed]
log.getdata [k] to bed [k] status;

end.

Operations:-

load (5, datalogger, 27)
- loads codefile datalogger into station

5 with moduletypeid = 27.

create(5, 27, 31, 500)
- creates an instance of moduletype 27

(i.e., datalogger) in station 5 with
moduleinstanceid of log = 31.

link( (5,3,31), (1,4,2))
-links log[l] .getdata to the monitor

.status entryport of the bed[II group
on station 1.

link((5,31,2), (2,4,2))
- log[2].getdata to bed[2].status

link( (5, 31, 3), (3, 4, 2))
- log [3] .getdata to bed [31 .status

link( (5, 31,4), (4, 4,2))
-log[41 .getdata to bed [4] .status

start(5, 31)
- start module instance 31 (i.e., log) in

station 5.

The operations unload, delete, unlink, and stop undo the

effect of load, create, link, and start, respectively. Each opera-
tion returns a code indicating the success or failure of the op-

eration. Operations are implemented by operating systems
modules and invoked -by sending messages to the entryports
of these modules. The CONIC Manager is responsible for
allocation and specification/system consistency (Section III-E)
but does not provide any intelligent strategies for change or

allocation.
The CONIC compiler has been implemented using the Am-

sterdam Compiler Kit [281 which includes a table driven code-

generator generator. We have currently implemented run-time
support for the LSI I family of computers and work is in
progress on VAX and 68000 backends. The operating system
which supports dynamic configuration is, as mentioned pre-
viously, implemented by a set of CONIC modules and as such
requires little work to port it to different target architectures.
The communications component of the OS has modules which
support Cambridge Ring, Omninet, and serial line hardware.
An Ethernet driver module is planned. To simplify the testing
of CONIC systems, we have provided the capability of running
configurations on the Host operating system (UNIX). Each
target station is simulated by a UNIX process.

VI. CONCLUSIONS

This paper has been concemed mainly with the problems of
describing and modifying the structure of a system. We have
presented a basic model of the configuration process which
permits dynamic incremental modification and extension.
Using this model we have determined the properties required
by languages and their execution environments in order to
support dynamic configuration. The existing and proposed
systems which were surveyed provide some but not all of the
properties required. Most do not exhibit configuration inde-
pedence in their programming language, usually because the
interconnections between modules are specified in the modw
ules themselves. This appears to be a crucial property. Since
most do not even distinguish between programming and con-
figuration, few systems provide a configuration specification
at all.
CONIC has been used as an example of a system environ-

ment which goes some way to providing the required facilities.
We have now had about -four years experience using earlier
versions of the CONIC programming and configuration lan-
guages for implementing operating system utilities, communi-
cations systems, distributed simulations, and, of course, games.
Perhaps the greatest success of CONIC has been the relative
ease with which naive students, with no previous experience
of distributed systems, have been able to implement distrib-
uted application programs. Also, the configuration indepen-
dent nature of CONIC modules has permitted the reuse of
many existing modules and thereby considerably reduced the
effort required to program new applications.
The reconfiguration facilities have attracted much outside

interest. A research project is investigating the use of recon-
figuration for adaptive control. The Mining Research and
Development Establishment in Britain are currently using
CONIC to produce software for distributed underground mon-
itoring and control systems. They hope to use the reconfig-
uration facilities to help introduce the system in a series of
phases, and to cope with the changing underground environ-
ment as old faces (areas where the coal is cut) are shut down
and new ones are opened. Another interesting use of the re-

configuration facilities is to provide fault tolerance. This
takes the form of a secondary passive standby module which
is configured into the system when the primary module fails.
We have provided two forms of standby: "cold" standby does
not retain the state information of the primary, and "hot"
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standby uses a transparent checkpointing mechanism to ensure
a consistent state [29].
In general, one of the main difficulties in dynamically chang-

ing a system configuration is to determine the effect of the
change on the running system. This has two aspects ofinterest.

Firstly, how will the system behave while the modification
is being performed? We have largely ignored the problem of
maintaining a safe and consistent system state while the sys-
tem is being modified. We believe this problem is separable
from the issues in modifying structure. It is concerned with
the way a change is performed rather than the change itself.
As such, we believe state consistency is a problem of change
strategy. The strategy used to perform a change is a function
of the Configuration Manager. The more that is understood
about how to perform changes while maintaining a safe and
consistent system, the more automated will be the Configu-
ration Manager. We are investigating whether the notion of
module quiescence [301, a form of module stable state, can
be used as an indication of the point at which reconfiguration
can be more safely initiated. Mechanisms to save and retrieve
module state information will also be required, and there is
an obvious need to provide some form of change atomicity
to ensure a consistent configuration in the face of possible
failures.
The second aspect concerns the resultant system after modi-

fication. Determination of the logical behavior of the modi-
fied system depends on the existence of specifications of indi-
vidual module behavior and on methods of composing these
behaviors to describe configured system behavior. CCS [19]
is one of the few approaches which can do this but the pnrmi-
tives used are restrictive and analysis is difficult. Another ap-
proach [31] is investigating the use of regular expressions to
specify process behaviors as sequences of events. System be-
havior (parallel composition) is given by a shuffle operator
which combines module behaviors by forcing simultaneous
participation (intersection) in those events specified as syn-
chronizing. Although a simple tool has been built to analyze
small systems for properties such as deadlock, the expressive
power of the approach is limited. Other aspects of a system
behavior affected by modification are its timing and reliability.
Much work remains to be done in this area.
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